W-band MMIC
x4 or x8 Frequency Multiplier

W-x4x8M-8692 Previously named TU-W1340309
GaAs PHEMT MMIC x4 or x8 Multiplier, 86 - 92GHz

Overview

W-x4x8M-8692 is a frequency multiplier with integrated amplifier and filter, designed to drive the W-SBM-9296 and W-DC-9296 mixers so that frequencies in the 92-96 GHz range can be easily realized using a 5.4 GHz baseband signal. This MMIC has a wideband input impedance match which means that it can operate in both x4 or x8 modes, with inputs of ~22 or ~11 GHz respectively. The circuit is designed on a 50um GaAs PHEMT substrate.

All bond pads and the die backside are gold plated and compatible with conventional die attach methods, as well as thermo-compression and thermosonic wire bonding, making it ideal for MCM and hybrid microcircuit applications. All data shown herein is provisional and is measured with the chip in a 50 Ohm environment and contacted with RF probes.

Features

- Either x4 or x8 operation
- 86-92 GHz output. (x4 mode)
- 86.6-90.6 GHz output. (x8 mode)
- >8dB return loss.
- Up to 8dBm output power.

Applications

- Narrow bandwidth millimeter-wave imaging.
- High resolution radar.
- Sensing.
- P2P communications; short haul/high capacity/low interference links.
GaAs PHEMT MMIC x4 or x8 Multiplier, 86 - 92GHz

Product datasheet

www.arralis.com

Specification Overview - x4 Mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Frequency</td>
<td>21.5</td>
<td></td>
<td>23</td>
<td>GHz</td>
</tr>
<tr>
<td>Output Frequency</td>
<td>86</td>
<td></td>
<td>92</td>
<td>GHz</td>
</tr>
<tr>
<td>Gain</td>
<td></td>
<td>-7</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Multiplication Factor</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Power</td>
<td>0</td>
<td></td>
<td>8</td>
<td>dBm</td>
</tr>
<tr>
<td>5th Harmonic Attenuation</td>
<td>27</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Current</td>
<td>210</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Notes:
The tests indicated have all been performed with 100pF de-coupling capacitors on all bias pads. All tests are carried out at 25°C.

Drain Bias on 1st Stage = 0.7V, Gate Bias on 1st Stage = -1.1V; Drain Bias on other stages = 2V; Gate Bias on other stages = 0V

Specification Overview - x8 Mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Frequency</td>
<td>10.825</td>
</tr>
<tr>
<td>Output Frequency</td>
<td>86.6</td>
</tr>
<tr>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td>Multiplication Factor</td>
<td>8</td>
</tr>
<tr>
<td>Output Power</td>
<td>-2</td>
</tr>
<tr>
<td>7th Harmonic Attenuation</td>
<td>18</td>
</tr>
<tr>
<td>9th Harmonic Attenuation</td>
<td>28</td>
</tr>
<tr>
<td>Current</td>
<td>210</td>
</tr>
</tbody>
</table>

Notes:
The tests indicated have all been performed with 100pF de-coupling capacitors on all bias pads. All tests are carried out at 25°C.

Gate Bias on 1st Stage = -0.6V, Gate Bias on other stages = 0V; Drain Bias on all stages = 4V
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Voltage</td>
<td>-5V to 0.2V dc</td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>5V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>600mA</td>
</tr>
<tr>
<td>RF Input Power</td>
<td>25dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>~40°C to +85°C</td>
</tr>
</tbody>
</table>
Measured Performance Data

x4 Operation

Figure 1

(VD1=0.7V, VG1=-1.1V, VDx=2V, VGx=0V, IDD=210mA)

Output Frequency (GHz)

Figure 2

(VD1=0.7V, VG1=-1.1V, VDx=2V, VGx=0V, IDD=210mA)

Gain (dB)

No licence is granted under any patent or any patent rights of Arralis. Information furnished by Arralis is believed to be accurate. No responsibility is assumed by Arralis for its use, nor for any infringements on the rights of other parties that may result from the use of the information herein. All specification are subject to change without notice.
Measured Performance Data

x4 Operation

Figure 3
(x4 Mode)
5th Harmonic Attenuation from 4th Order

(VD1=0.7V, VG1=-1.1V, VDx=2V, VGx=0V, IDD=210mA)
Measured Performance Data

x8 Operation

Figure 4
(x8 Mode) Output Power

(VG1=-0.6V, VDD=4V, VGx=0V, IDD=210mA)

Figure 5
(x8 Mode) Conversion Gain

(VG1=-0.6V, VDD=4V, VGx=0V, IDD=210mA)
Measured Performance Data

x8 Operation

Figure 6
7th Harmonic Attn. from 8th

(VG1=-0.6V, VDD=4V, VGx=0V, IDD=210mA)

Output Frequency (GHz)

9dBm IP Power
12dBm IP Power
14dBm IP Power

Attenuation (dB)

Figure 7
9th Harmonic Attn. from 8th

(VG1=-0.6V, VDD=4V, VGx=0V, IDD=210mA)

Output Frequency (GHz)

9dBm IP Power
12dBm IP Power
14dBm IP Power

Attenuation (dB)
Pad Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFIN</td>
<td>Input RF pad. This pad is AC coupled.</td>
</tr>
<tr>
<td>RFOUT</td>
<td>Output RF pad. This pad is AC coupled.</td>
</tr>
<tr>
<td>VDx</td>
<td>Drain bias pad for stage x</td>
</tr>
<tr>
<td>VGx</td>
<td>Gate bias pad for stage x.</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>The die backside must be connected to RF/DC ground.</td>
</tr>
</tbody>
</table>

Notes

1. All dimensions are in μm.
2. Typical DC bond pads are 80μm square.
3. RF bond pads are 60μm square.
4. All pads have gold metalisation.
5. Gold backside metalisation.
6. Backside metal is ground.
7. Connections are not required for unlabelled bond pads.
8. Die thickness is 50μm

Die Packing Information

All die are delivered using gel-paks unless otherwise requested.
Die should be mounted on conductive material such as gold-plated metal to provide a good ground and suitable heat sink, if necessary.

1. Attaching the die using Au/Sn preforms is preferable. The Eutectic melt for Au/Sn occurs at approximately 280°C so the die (plus mount and preform) is initially heated up to 180°C and then it is heated for approximately 10 seconds to 280°C using a nitrogen heat gun. The device will survive 10 seconds at this temperature. The static breakdown for GaAs devices is approximately 330°C.
2. Pure, dry nitrogen should be used as the heat source.
3. If the devices cannot be lifted/placed by a vacuum device, then ESD die-lifting tweezers are preferable.
4. Supply lines should be decoupled with 100pF capacitors. Larger planar capacitors could be used if available.
5. Aluminium wire must not be used.
Disclaimer

The information contained herein is believed to be reliable; however, Arralis makes no warranties regarding the information and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information is subject to change without notice, therefore customers should obtain the latest relevant information before placing orders for Arralis products. The information contained herein does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This information does not constitute a warranty with respect to the product described, and Arralis disclaims any and all warranties either expressed or implied, relating to sale and/or use of Arralis products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right.

Without limiting the generality of the foregoing, Arralis products are not warranted or authorised for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2021 © Arralis

©2021 Arralis Ltd. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.