W-SPST-90100
Previously named TU-W1401601
GaAs PHEMT MMIC Attenuator / SPST Switch, 90 – 100 GHz

Overview

The W-SPST-90100 is a GaAs PHEMT diode based SPST switch and variable attenuator with a single input and output. The attenuation value may be adjusted to any value within the specified attenuation range. The chip is manufactured on a 50um substrate with 100nm gate length. All bond pads and the die underside are gold plated. The control voltage ranges from +1.5V to -1.5V, the latter giving maximum attenuation.

This MMIC is compatible with conventional die attach methods, as well as thermocompression and thermosonic wire bonding, making it ideal for MCM and hybrid microcircuit applications. All data shown herein is provisional and is measured with the chip in a 50 Ohm environment and contacted with RF probes. A packaged version of the devices is also available with WR10 waveguide input and output.

Features

- 90 – 100GHz.
- 2 - 25 dB attenuation range.
- Low operating current.
- >15dBm power handling.
- High speed operation.
- Small chip size.

Applications

- Narrow bandwidth millimeter-wave imaging.
- Pulse modulation.
- High resolution radar.
- LNA protection.
- Sensing.
- P2P communications; short haul/high capacity/low interference links.
- Radiometry.
Specification Overview

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>GHz</td>
<td></td>
</tr>
<tr>
<td>Insertion Loss Closed</td>
<td>1.5</td>
<td>1.75</td>
<td>2.0</td>
<td>dB</td>
<td>Biased at 1.5V, 0mA</td>
</tr>
<tr>
<td>Isolation (RF1 to RF2)</td>
<td>20</td>
<td>23</td>
<td>25</td>
<td>dB</td>
<td>Biased at -1.5V, 25mA</td>
</tr>
<tr>
<td>Return Loss Closed</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>dB</td>
<td>Biased at 1.5V, 0mA</td>
</tr>
<tr>
<td>Return Loss Open</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>dB</td>
<td>Biased at -1.5V, 25mA</td>
</tr>
<tr>
<td>Attenuation</td>
<td>2</td>
<td>25</td>
<td>25</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Maximum OP Power</td>
<td>15</td>
<td></td>
<td></td>
<td>dBm</td>
<td>at P1dB</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>-1.5</td>
<td></td>
<td>+1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating Current</td>
<td>25</td>
<td></td>
<td>0</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Voltage</td>
<td>-2V to +10V dc</td>
</tr>
<tr>
<td>RF Power</td>
<td>25dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

Notes

The tests indicated have all been performed with 100pF de-coupling capacitors on all Vc pads. All tests are carried out at 25°C. ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features proprietary protection circuitry, damage may occur on devices subjected to ESD. Proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
Measured Performance Data

Figure 1
'Closed' Return Loss

Figure 2
'Insertion Loss

No licence is granted under any patent or any patent rights of Arralis. Information furnished by Arralis is believed to be accurate. No responsibility is assumed by Arralis for its use, nor for any infringements on the rights of other parties that may result for the use of the information herein. All specification are subject to change without notice.
Measured Performance Data

(Vc=-1.5V, Icc=25mA)

Figure 3
'Open' Return Loss

Figure 4
Isolation

RF Frequency (GHz)

No licence is granted under any patent or any patent rights of Arralis. Information furnished by Arralis is believed to be accurate. No responsibility is assumed by Arralis for its use, nor for any infringements on the rights of other parties that may result for the use of the information herein. All specification are subject to change without notice.
Measured Performance Data

Figure 5
Attenuation

Figure 6
Return Loss

RF Frequency (GHz)

Attenuation (dB)

(-1.5V < Vc < 1.5V)

RF Frequency (GHz)

Return Loss (dB)

(-1.5V < Vc < 1.5V)
Pad Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1</td>
<td>Input RF pad. This pad is AC coupled. (RF1 & RF2 are interchangeable).</td>
</tr>
<tr>
<td>RF2</td>
<td>Output RF pad. This pad is AC coupled. (RF1 & RF2 are interchangeable).</td>
</tr>
<tr>
<td>VC</td>
<td>Control Voltage pad.</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>The die backside must be connected to RF/DC ground.</td>
</tr>
</tbody>
</table>

Notes

1. All dimensions are in um.
2. Typical DC bond pads are 80um square.
3. RF bond pads are 60um square.
4. All pads have gold metallisation.
5. Gold backside metallisation.
6. Backside metal is ground.
7. Connections are not required for unlabelled bond pads.
8. Die thickness is 50um

Die Packing Information

All die are delivered using gel-paks unless otherwise requested.
Die should be mounted on conductive material such as gold-plated metal to provide a good ground and suitable heat sink, if necessary.

1. Attaching the die using Au/Sn preforms is preferable. The Eutectic melt for Au/Sn occurs at approximately 280°C so the die (plus mount and preform) is initially heated up to 180°C and then it is heated for approximately 10 seconds to 280°C using a nitrogen heat gun. The device will survive 10 seconds at this temperature. The static breakdown for GaAs devices is approximately 330°C.
2. Pure, dry nitrogen should be used as the heat source.
3. If the devices cannot be lifted/placed by a vacuum device, then ESD die-lifting tweezers are preferable.
4. Supply lines should be decoupled with 100pF capacitors. Larger planar capacitors could be used if available.
5. Aluminium wire must not be used.
Disclaimer

The information contained herein is believed to be reliable; however, Arralis makes no warranties regarding the information and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information is subject to change without notice, therefore customers should obtain the latest relevant information before placing orders for Arralis products. The information contained herein does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This information does not constitute a warranty with respect to the product described, and Arralis disclaims any and all warranties either expressed or implied, relating to sale and/or use of Arralis products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right.

Without limiting the generality of the foregoing, Arralis products are not warranted or authorised for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2021 © Arralis

©2021 Arralis Ltd. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

Arralis European Offices

t: +(44) 1793 239670 (UK)
e: sales@arralis.com

Arralis USA Office

t: +(1) 386 301 3249 (USA)
e: emilie.wren@arralis.com

arralis.com