W-SBM-9296 Previously named TU-W1340307
Single-Balanced GaAs Diode MMIC Mixer, 92 - 96GHz

Overview

W-SBM-9296 is a single balanced diode mixer with integrated filter to increase image rejection. This MMIC is designed for output frequencies in the range from 92GHz to 96GHz using LO signals within the 86GHz to 90GHz band. The circuit typically supplies low conversion loss for frequencies up to 6GHz and by using a 4-pole filter the image signal is effectively removed.

All bond pads and the die underside are gold plated. The MMIC is compatible with precision die attach methods, as well as thermo-compression and thermosonic wire bonding, making it ideal for MCM and hybrid microcircuit applications. All data shown herein is measured with the chip in a 50 Ohm environment and contacted with RF probes.

Features

- 92 – 96GHz.
- <17 dB conversion loss.
- 10dB return loss.
- >25dB LO-RF isolation.
- >25dB image rejection.

Applications

- Narrow and wide bandwidth
 Millimeter-wave Imaging.
- High resolution radar.
- Sensing.
- P2P communications; short haul/high capacity/low interference links.
Specification Overview
(based on tests where $\text{IF} = 5.4 \text{GHz}$, $\text{LO} = +13\text{dBm}$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>92</td>
<td>96</td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>LO Frequency</td>
<td>86.6</td>
<td>90.6</td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>LO Power</td>
<td>10</td>
<td>13</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>IF Frequency</td>
<td>2</td>
<td>5.4</td>
<td>6</td>
<td>GHz</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>16</td>
<td>20</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Image Rejection*</td>
<td>25</td>
<td>30</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>LO-RF Isolation</td>
<td>25</td>
<td>30</td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC Voltages</td>
<td>-10V to $+2\text{V}$ dc</td>
</tr>
<tr>
<td>LO Power</td>
<td>25dBm</td>
</tr>
<tr>
<td>IF / RF Power</td>
<td>22dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to $+150^\circ\text{C}$</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>$+150^\circ\text{C}$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to $+85^\circ\text{C}$</td>
</tr>
</tbody>
</table>

Notes
All tests are carried out at 25°C.

*to wanted signal

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features proprietary protection circuitry, damage may occur on devices subjected to ESD. Proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

No licence is granted under any patent or any patent rights of Arralis. Information furnished by Arralis is believed to be accurate. No responsibility is assumed by Arralis for its use, nor for any infringements on the rights of other parties that may result for the use of the information herein. All specification are subject to change without notice.
Measured Performance Data

Test Conditions: IF = Fixed, 5.4GHz, 10dBm, LO = 86.6GHz – 90.6GHz, (LO=(RF-IF); IF=5.4GHz, 10dBm)

Figure 1
Conversion Loss v RF Frequency

Figure 2
Image Rejection v RF Frequency
Measured Performance Data

Test Conditions: - IF = Fixed, 5.4GHz, 10dBm, LO = 86.6GHz – 90.6GHz, (IF=5.4GHz, 10dBm)

Figure 3
LO - RF Isolation

Figure 4
Conversion Loss v IF Frequency

Test Conditions: - RF = Fixed, 94GHz, LO = 84 – 92GHz, 13dBm, IF = 2GHz – 10GHz, 10dBm, (RF=94GHz; LO=(RF-IF), 13dBm; IF=10dBm)
Measured Performance Data

Test Conditions: RF = Fixed, 94GHz, LO = 84 – 92GHz, 13dBm, IF = 2GHz – 10GHz, 10dBm, (RF=94GHz; LO=(RF-IF), 13dBm; IF=10dBm)

Figure 5
Image Rejection v IF Frequency

Test Conditions: RF = Fixed, 94GHz, LO = 84 – 92GHz, 13dBm, IF = 2GHz – 10GHz, 10dBm, (RF=94GHz; LO=(RF-IF), 13dBm; IF=10dBm)

Figure 6
LO - RF Isolation
Measured Performance Data

Test Conditions: RF = Fixed, 94GHz, LO = 88.6GHz, 13dBm, IF = 5.4GHz, (RF=94GHz; LO=88.6GHz, 13dBm; IF=5.4GHz)
Pad Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>LO pad. This pad is dc coupled.</td>
</tr>
<tr>
<td>RF</td>
<td>RF pad. This pad is ac coupled.</td>
</tr>
<tr>
<td>IF</td>
<td>IF pad. This pad is dc coupled.</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>The die backside must be connected to RF/dc ground.</td>
</tr>
</tbody>
</table>

Notes

1. All dimensions are in um.
2. Typical dc bond pads are 80um square.
3. RF bond pads are 60um square.
4. All pads have gold metalisation.
5. Gold backside metalisation.
6. Backside metal is ground.
7. Connections are not required for unlabelled bond pads.
8. Die thickness is 50um

Die Packing Information

All die are delivered using gel-paks unless otherwise requested.
Die should be mounted on conductive material such as gold-plated metal to provide a good ground and suitable heat sink, if necessary.

1. Attaching the die using Au/Sn preforms is preferable. The Eutectic melt for Au/Sn occurs at approximately 280°C so the die (plus mount and preform) is initially heated up to 180°C and then it is heated for approximately 10 seconds to 280°C using a nitrogen heat gun. The device will survive 10 seconds at this temperature. The static breakdown for GaAs devices is approximately 330°C.

2. Pure, dry nitrogen should be used as the heat source.

3. If the devices cannot be lifted/ placed by a vacuum device, then ESD die-lifting tweezers are preferable.

4. Supply lines should be decoupled with 100pF capacitors. Larger planar capacitors could be used if available.

5. Aluminium wire must not be used.
Disclaimer

The information contained herein is believed to be reliable; however, Arralis makes no warranties regarding the information and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information is subject to change without notice, therefore customers should obtain the latest relevant information before placing orders for Arralis products. The information contained herein does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This information does not constitute a warranty with respect to the product described, and Arralis disclaims any and all warranties either expressed or implied, relating to sale and/or use of Arralis products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right.

Without limiting the generality of the foregoing, Arralis products are not warranted or authorised for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2021 © Arralis