W-MPA-8691 Previously named TU-W1330304
Medium Power Amplifier, 86-91 GHz

Overview

W-MPA-8691 is a 4-stage MMIC power amplifier that covers frequencies from 86GHz to 91GHz. This MMIC provides greater than 20dB of stable gain, and a power output of more than 16dBm from a 4V supply voltage and <85mA current.

All bond pads and the die backside are gold plated. The MMIC is compatible with precision die attach methods, as well as thermo-compression and thermosonic wire bonding, making it ideal for MCM and hybrid microcircuit applications. All data shown is measured with the chip in a 50 Ohm environment and contacted with RF probes.

A packaged version of the device is also available with WR10 waveguide input and output on request.

Features

- 86 - 91GHz.
- 20dB gain.
- 16dBm Psat.
- Unconditionally stable.

Applications

- Narrow bandwidth millimeter-wave imaging.
- High resolution radar.
- Sensing.
- P2P communications;
- short haul/high capacity/low interference links.
- Medical.
- IOT.
Specification Overview

(Vdd=4V, Vgg=-0.25V, Idd=750mA)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>86</td>
<td>91</td>
<td>GHz</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>20</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>6</td>
<td>15</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>3</td>
<td>10</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Output Power</td>
<td>16</td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Gate Voltage*</td>
<td>-0.3</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>85</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Voltage</td>
<td>-5V to 0.2V dc</td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>5V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>200mA</td>
</tr>
<tr>
<td>RF Input Power</td>
<td>6dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +175°C</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>+175°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

Notes

*Should be adjusted to ensure the correct current is drawn. All results are stated for temperatures at 25°C.

Assumes 100pF de-coupling capacitors on all bias pads.

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features proprietary protection circuitry, damage may occur on devices subjected to ESD. Proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
Performance Data

![Output Power](Vdd=4V, Vgg=-0.3V, Idd=85mA)

![Gain](Vdd=4V, Vgg=-0.25V, Idd=750mA)
Performance Data

(Vdd=4V, Vgg=-0.3V, Idd=85mA)

Figure 3
Input Return Loss

(Return Loss (dB))

(Vdd=4V, Vgg=-0.3V, Idd=85mA)

Figure 4
Output Return Loss

(Return Loss (dB))
GaAs PHEMT MMIC POWER AMPLIFIER, 86 - 91GHz

product datasheet

www.arralis.com

Outline Drawing

[Diagram of the GaAs PHEMT MMIC POWER AMPLIFIER with labels for RFIN, Rfout, VG1, VG2, VG3, VG4, VD1, VD2, VD3, VD4, dimensions and key design elements.]
Pad Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFIN</td>
<td>Input RF pad. This pad is AC coupled.</td>
</tr>
<tr>
<td>RFOUT</td>
<td>Output RF pad. This pad is AC coupled.</td>
</tr>
<tr>
<td>VDx</td>
<td>Drain bias pad for stage x.</td>
</tr>
<tr>
<td>VGx</td>
<td>Gate bias pad for stage x.</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>The die backside must be connected to RF/DC ground.</td>
</tr>
</tbody>
</table>

Notes

1. All dimensions are in um.
2. Typical DC bond pads are 80um square.
3. RF bond pads are 60um square.
5. Backside metal is ground.
6. Die thickness is 50um.

Die Packing Information

All die are delivered using gel-paks unless otherwise requested.
Die should be mounted on conductive material such as gold-plated metal to provide a good ground and suitable heat sink, if necessary.

1. Attaching the die using Au/Sn preforms is preferable. The Eutectic melt for Au/Sn occurs at approximately 280°C so the die (plus mount and preform) is initially heated up to 180°C and then it is heated for approximately 10 seconds to 280°C using a nitrogen heat gun. The device will survive 10 seconds at this temperature. The static breakdown for GaAs devices is approximately 330°C.

2. Pure, dry nitrogen should be used as the heat source.

3. If the devices cannot be lifted/placed by a vacuum device, then ESD die-lifting tweezers are preferable.

4. Aluminium wire must not be used.
Disclaimer

The information contained herein is believed to be reliable; however, Arralismakes no warranties regarding the information and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information is subject to change without notice, therefore customers should obtain the latest relevant information before placing orders for Arralis products. The information contained herein does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This information does not constitute a warranty with respect to the product described, and Arralis disclaims any and all warranties either expressed or implied, relating to sale and/or use of Arralis products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right.

Without limiting the generality of the foregoing, Arralis products are not warranted or authorised for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2021 © Arralis