W-DC-9396 Previously named TU-W1360303
GaAs PHEMT Downconverter Core Chip 93 – 96GHz

Overview

W-DC-9296 is an integrated mixer and low noise amplifier MMIC that downconverts frequencies from 93 – 96GHz into the 3 - 6GHz frequency band. This MMIC provides conversion gain with a maximum output power of -5dBm and noise figure <5dB while running from a +4V supply voltage and at less than 80mA.

All bond pads and the die underside are gold plated. The MMIC is compatible with conventional die attach methods, as well as thermo-compression and thermosonic wire bonding, making it ideal for MCM and hybrid microcircuit applications. All data shown herein is provisional and is measured with the chip in a 50 Ohm environment and contacted with RF probes.

The MMIC is available in die form.

Features

- 93 – 96GHz input.
- 3 – 6GHz output.
- 5dB conversion gain.
- -5dBm output power.
- 5dB noise figure.

Applications

- Narrow bandwidth millimeter-wave Imaging.
- High resolution radar.
- Sensing.
- P2P communications; short haul/high capacity/low interference links.
Specification Overview

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Frequency</td>
<td>93</td>
<td>96</td>
<td>GHz</td>
<td></td>
</tr>
<tr>
<td>IF Frequency</td>
<td>3</td>
<td>6</td>
<td>GHz</td>
<td></td>
</tr>
<tr>
<td>Conversion Gain</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>dB</td>
</tr>
<tr>
<td>LO Frequency</td>
<td>86.6</td>
<td>90.6</td>
<td>GHz</td>
<td></td>
</tr>
<tr>
<td>LO Power</td>
<td>13</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise Figure</td>
<td>5</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Output</td>
<td>-5</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Gate Voltage*</td>
<td>0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>80</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Voltage</td>
<td>-5V to 0.2V dc</td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>5V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>200mA</td>
</tr>
<tr>
<td>LO Power</td>
<td>25dBm</td>
</tr>
<tr>
<td>RF Input Power</td>
<td>-10dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

Notes
The tests indicated have all been performed with 100pF de-coupling capacitors on all bias pads. All tests are carried out at 25°C.

*Should be adjusted to ensure the correct current is drawn.

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features proprietary protection circuitry, damage may occur on devices subjected to ESD. Proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
Measured Performance Data

Test Conditions: IF = Fixed, 5.4GHz, 4dBm, LO = 86.6GHz – 90.6GHz, 13dBm

GaAs PHEMT DOWNCONVERTER CORE CHIP 93 – 96GHz

GaAs PHEMT DOWNCONVERTER CORE CHIP 93 – 96GHz

 Conversion Gain

(IF=5.4GHz, RF Power=-13dBm, LO=13dBm, Vdd=4V, Vgg=-0.25V, Idd=75mA)

Conversion Gain (dB) vs RF Frequency (GHz)

 0 5 10 15 20
 92 92.5 93 93.5 94 94.5 95 95.5 96

2nd Harmonic Rejection

(IF=5.4GHz, RF Power=-13dBm, LO=13dBm, Vdd=4V, Vgg=-0.25V, Idd=75mA)

2nd Harmonic (to Fundamental) (dBc) vs RF Frequency (GHz)

 0 5 10 15 20 25 30 35 40
 92 92.5 93 93.5 94 94.5 95 95.5 96

No licence is granted under any patent or any patent rights of Arralis. Information furnished by Arralis is believed to be accurate. No responsibility is assumed by Arralis for its use, nor for any infringements on the rights of other parties that may result for the use of the information herein. All specification are subject to change without notice.
Measured Performance Data
Test Conditions: - IF = Fixed, 5.4GHz, 4dBm, LO = 86.6GHz – 90.6GHz, 13dBm

(IF=5.4GHz, RF Power=-13dBm, LO=13dBm, Vdd=4V, Vgg=-0.25V, Idd=75mA)
Notes

1. All dimensions are in um.
2. Typical DC bond pads are 80um square.
3. RF bond pads are 60um square.
4. All pads have gold metalisation.
5. Gold backside metalisation.
6. Backside metal is ground.
7. Connections are not required for unlabelled bond pads.
8. Die thickness is 50um

Die Packing Information

All die are delivered using gel-paks unless otherwise requested.
Pad Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>Input for LO signal. Requires AC-coupling.</td>
</tr>
<tr>
<td>IF</td>
<td>Output for IF signal. Requires AC-coupling.</td>
</tr>
<tr>
<td>RFIN</td>
<td>Input pad for RF signal. This pad is AC coupled.</td>
</tr>
<tr>
<td>VDx</td>
<td>Drain Bias pad for stage x.</td>
</tr>
<tr>
<td>VGx</td>
<td>Gate Bias pad for stage x.</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>The die backside must be connected to RF/DC ground.</td>
</tr>
</tbody>
</table>

General Notes on Assembly

(Not actual die – these rules are applied to all MMICs unless otherwise stated)
General Notes on Assembly

Die should be mounted on conductive material such as gold-plated metal to provide a good ground and suitable heat sink, if necessary.

1. Attaching the die using Au/Sn preforms is preferable. The Eutectic melt for Au/Sn occurs at approximately 280°C so the die (plus mount and preform) is initially heated up to 180°C and then it is heated for approximately 10 seconds to 280°C using a nitrogen heat gun. The device will survive 10 seconds at this temperature. The static breakdown for GaAs devices is approximately 330°C.

2. Pure, dry nitrogen should be used as the heat source.

3. If the devices cannot be lifted/ placed by a vacuum device, then ESD die-lifting tweezers are preferable.

4. Supply lines should be decoupled with 100pF capacitors. Larger planar capacitors could be used if available.

5. Aluminium wire must not be used.
Disclaimer

The information contained herein is believed to be reliable, however, Arralis makes no warranties regarding the information and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information is subject to change without notice, therefore customers should obtain the latest relevant information before placing orders for Arralis products. The information contained herein does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This information does not constitute a warranty with respect to the product described, and Arralis disclaims any and all warranties either expressed or implied, relating to sale and/or use of Arralis products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right.

Without limiting the generality of the foregoing, Arralis products are not warranted or authorised for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2021 © Arralis

©2021 Arralis Ltd. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

Arralis European Offices

t: +(44) 1793 239670 (UK)
e: sales@arralis.com

Arralis USA Office

+(1) 386 301 3249 (USA)
e: emilie.wren@arralis.com

arralis.com